Skip to main content

SDET vs. Manual Tester vs. Automation Engineer – Key Differences

 

Introduction

Testing is the backbone of software development, ensuring that applications function correctly. However, the roles within testing differ significantly—especially between a Manual Tester, Automation Engineer, and SDET. Let’s explore their differences.


Role Comparison

Role

Primary Focus

Required Skills

Manual Tester

Executes test cases manually

Test documentation, functional testing, defect reporting

Automation Engineer

Writes scripts to automate tests

Programming, automation tools, test execution

SDET

Develops and maintains automation frameworks

Coding, CI/CD, API testing, performance testing

Technical vs. Non-Technical Aspects

  • Manual Testers focus on user experience validation without coding.
  • Automation Engineers write scripts but don’t develop frameworks.
  • SDETs bridge the gap between development and testing by coding robust automation frameworks.


Conclusion

While all three roles contribute to software quality, an SDET brings a unique developer mindset to testing, making them highly valuable in modern Agile teams.


Comments

Popular posts from this blog

What is an SDET? – Roles, Responsibilities, and Career Path

Introduction The field of software testing has evolved significantly, and with the rise of automation, the Software Development Engineer in Test (SDET) role has become crucial. SDETs are technical testers with strong programming skills who ensure software quality through test automation and continuous integration. But what does an SDET really do? Let’s dive in.   Key Responsibilities of an SDET An SDET wears multiple hats—part developer, part tester, and part automation engineer. Their primary responsibilities include: Developing test automation frameworks for functional and regression testing. Writing automated test scripts to validate application functionality. Collaborating with developers to ensure testability of code. Implementing CI/CD pipelines with automated testing for continuous deployment. Conducting performance, security, and API testing to enhance software robustness. Required Skills for an SDET To excel as an SDET, you need a mix of technical and so...

Keys.RETURN vs Keys.ENTER in Selenium: Are They Really the Same?

When you're automating keyboard interactions with Selenium WebDriver, you're bound to encounter both Keys.RETURN and Keys.ENTER . At a glance, they might seem identical—and in many cases, they behave that way too. But under the hood, there’s a subtle, nerdy distinction that can make all the difference when fine-tuning your test scripts. In this post, we’ll break down these two key constants, when to use which, and why understanding the difference (even if minor) might give you an edge in crafting more accurate and resilient automation. 🎹 The Subtle Difference On a standard physical keyboard, there are typically two keys that look like Enter: Enter key on the numeric keypad. Return key on the main keyboard (near the letters). Historically: Keys.RETURN refers to the Return key . Keys.ENTER refers to the Enter key . That’s right—the distinction comes from old-school typewriters and legacy keyboard design. Return meant returning the carriage to the beginning ...

Regression Testing vs. Sanity Testing: Detailed Explanation with Example

  Regression testing and sanity testing are both essential software testing techniques, but they serve different purposes in ensuring software stability after modifications. Regression Testing Definition: Regression testing is a comprehensive testing approach that ensures recent code changes do not negatively impact the existing functionality of an application. It involves re-running previously executed test cases to verify that the software still works as expected after modifications such as bug fixes, feature additions, or updates. Key Characteristics: Scope: Covers the entire application. Purpose: Ensures that new changes do not break existing functionality. Execution Time: Time-consuming due to extensive testing. Test Cases: Uses a large set of test cases. Automation: Often automated for efficiency. Depth: In-depth testing of all functionalities. When Used: After major updates, bug fixes, or new features. ...